%PDF- %PDF-
Direktori : /usr/src/kernels/2.6.32-754.24.3.el6.x86_64/arch/x86/include/asm/ |
Current File : //usr/src/kernels/2.6.32-754.24.3.el6.x86_64/arch/x86/include/asm/nospec-branch.h |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NOSPEC_BRANCH_H__ #define __NOSPEC_BRANCH_H__ #include <asm/alternative.h> #include <asm/alternative-asm.h> #include <asm/cpufeature.h> /* * Fill the CPU return stack buffer. * * Each entry in the RSB, if used for a speculative 'ret', contains an * infinite 'pause; lfence; jmp' loop to capture speculative execution. * * This is required in various cases for retpoline and IBRS-based * mitigations for the Spectre variant 2 vulnerability. Sometimes to * eliminate potentially bogus entries from the RSB, and sometimes * purely to ensure that it doesn't get empty, which on some CPUs would * allow predictions from other (unwanted!) sources to be used. * * We define a CPP macro such that it can be used from both .S files and * inline assembly. It's possible to do a .macro and then include that * from C via asm(".include <asm/nospec-branch.h>") but let's not go there. */ #define RSB_CLEAR_LOOPS 32 /* To forcibly overwrite all entries */ #define RSB_FILL_LOOPS 16 /* To avoid underflow */ /* * Google experimented with loop-unrolling and this turned out to be * the optimal version — two calls, each with their own speculation * trap should their return address end up getting used, in a loop. */ #define __FILL_RETURN_BUFFER(reg, nr, sp) \ mov $(nr/2), reg; \ 771: \ call 772f; \ 773: /* speculation trap */ \ pause; \ lfence; \ jmp 773b; \ 772: \ call 774f; \ 775: /* speculation trap */ \ pause; \ lfence; \ jmp 775b; \ 774: \ dec reg; \ jnz 771b; \ add $(BITS_PER_LONG/8) * nr, sp; #ifdef __ASSEMBLY__ /* * This should be used immediately before a retpoline alternative. It tells * objtool where the retpolines are so that it can make sense of the control * flow by just reading the original instruction(s) and ignoring the * alternatives. * * Since there is no objtool in RHEL6, the .discard.nospec object section * is not generated. */ .macro ANNOTATE_NOSPEC_ALTERNATIVE #if 0 .Lannotate_\@: .pushsection .discard.nospec .long .Lannotate_\@ - . .popsection #endif .endm /* * These are the bare retpoline primitives for indirect jmp and call. * Do not use these directly; they only exist to make the ALTERNATIVE * invocation below less ugly. */ .macro RETPOLINE_JMP reg:req call .Ldo_rop_\@ .Lspec_trap_\@: pause lfence jmp .Lspec_trap_\@ .Ldo_rop_\@: mov \reg, (%_ASM_SP) ret .endm /* * This is a wrapper around RETPOLINE_JMP so the called function in reg * returns to the instruction after the macro. */ .macro RETPOLINE_CALL reg:req jmp .Ldo_call_\@ .Ldo_retpoline_jmp_\@: RETPOLINE_JMP \reg .Ldo_call_\@: call .Ldo_retpoline_jmp_\@ .endm /* * JMP_NOSPEC and CALL_NOSPEC macros can be used instead of a simple * indirect jmp/call which may be susceptible to the Spectre variant 2 * attack. */ .macro JMP_NOSPEC reg:req #ifdef CONFIG_RETPOLINE ANNOTATE_NOSPEC_ALTERNATIVE ALTERNATIVE_2 __stringify(jmp *\reg), \ __stringify(RETPOLINE_JMP \reg), X86_FEATURE_RETPOLINE, \ __stringify(lfence; jmp *\reg), X86_FEATURE_RETPOLINE_AMD #else jmp *\reg #endif .endm .macro CALL_NOSPEC reg:req #ifdef CONFIG_RETPOLINE ANNOTATE_NOSPEC_ALTERNATIVE ALTERNATIVE_2 __stringify(call *\reg), \ __stringify(RETPOLINE_CALL \reg), X86_FEATURE_RETPOLINE,\ __stringify(lfence; call *\reg), X86_FEATURE_RETPOLINE_AMD #else call *\reg #endif .endm /* * A simpler FILL_RETURN_BUFFER macro. Don't make people use the CPP * monstrosity above, manually. */ .macro FILL_RETURN_BUFFER_CLOBBER reg=%_ASM_AX ALTERNATIVE "jmp .Lskip_rsb_\@", \ __stringify(__FILL_RETURN_BUFFER(\reg, \ RSB_CLEAR_LOOPS, %_ASM_SP)) \ X86_FEATURE_SMEP .Lskip_rsb_\@: .endm .macro FILL_RETURN_BUFFER push %_ASM_AX FILL_RETURN_BUFFER_CLOBBER reg=%_ASM_AX pop %_ASM_AX .endm /* * MDS_USER_CLEAR_CPU_BUFFERS macro is the assembly equivalent of * upstream mds_user_clear_cpu_buffers(). Like the C version, the * __KERNEL_DS is used for verw. Alternative is used here as * static_key isn't available in RHEL6. */ .macro MDS_USER_CLEAR_CPU_BUFFERS ALTERNATIVE "jmp .Ldone_\@", "", X86_FEATURE_MDS_USR_CLR jmp .Lverw_\@ .balign 2 .Lds_\@: .word __KERNEL_DS .Lverw_\@: verw .Lds_\@(%rip) .Ldone_\@: .endm #else /* __ASSEMBLY__ */ /* * Since there is no objtool in RHEL6, the .discard.nospec object section * is not generated. */ #define ANNOTATE_NOSPEC_ALTERNATIVE #if 0 "999:\n\t" \ ".pushsection .discard.nospec\n\t" \ ".long 999b - .\n\t" \ ".popsection\n\t" #endif #if defined(CONFIG_X86_64) && defined(RETPOLINE) /* * Since the inline asm uses the %V modifier which is only in newer GCC, * the 64-bit one is dependent on RETPOLINE not CONFIG_RETPOLINE. */ # define CALL_NOSPEC \ ANNOTATE_NOSPEC_ALTERNATIVE \ ALTERNATIVE( \ "call *%[thunk_target]\n", \ "call __x86_indirect_thunk_%V[thunk_target]\n", \ X86_FEATURE_RETPOLINE) # define THUNK_TARGET(addr) [thunk_target] "r" (addr) #elif defined(CONFIG_X86_32) && defined(CONFIG_RETPOLINE) /* * For i386 we use the original ret-equivalent retpoline, because * otherwise we'll run out of registers. We don't care about CET * here, anyway. */ # define CALL_NOSPEC ALTERNATIVE("call *%[thunk_target]\n", \ " jmp 904f;\n" \ " .align 16\n" \ "901: call 903f;\n" \ "902: pause;\n" \ " lfence;\n" \ " jmp 902b;\n" \ " .align 16\n" \ "903: addl $4, %%esp;\n" \ " pushl %[thunk_target];\n" \ " ret;\n" \ " .align 16\n" \ "904: call 901b;\n", \ X86_FEATURE_RETPOLINE) # define THUNK_TARGET(addr) [thunk_target] "rm" (addr) #else /* No retpoline for C / inline asm */ # define CALL_NOSPEC "call *%[thunk_target]\n" # define THUNK_TARGET(addr) [thunk_target] "rm" (addr) #endif /* The Spectre V2 mitigation variants */ enum spectre_v2_mitigation { SPECTRE_V2_NONE, SPECTRE_V2_RETPOLINE_MINIMAL, SPECTRE_V2_RETPOLINE_MINIMAL_AMD, SPECTRE_V2_RETPOLINE_NO_IBPB, SPECTRE_V2_RETPOLINE_AMD, SPECTRE_V2_RETPOLINE_UNSAFE_MODULE, SPECTRE_V2_RETPOLINE, SPECTRE_V2_RETPOLINE_IBRS_USER, SPECTRE_V2_IBRS, SPECTRE_V2_IBRS_ALWAYS, SPECTRE_V2_IBP_DISABLED, }; /* * asm(_ASM_SP) doesn't work as the RHEL6 gcc compiler seems to have * problem with exact spaces. */ #ifdef CONFIG_X86_64 #define _ASM_STACK_POINTER "rsp" #else #define _ASM_STACK_POINTER "esp" #endif /* * The Intel specification for the SPEC_CTRL MSR requires that we * preserve any already set reserved bits at boot time (e.g. for * future additions that this kernel is not currently aware of). * We then set any additional mitigation bits that we want * ourselves and always use this as the base for SPEC_CTRL. * We also use this when handling guest entry/exit as below. */ extern u64 x86_spec_ctrl_base; /* The Speculative Store Bypass disable variants */ enum ssb_mitigation { SPEC_STORE_BYPASS_NONE, SPEC_STORE_BYPASS_DISABLE, SPEC_STORE_BYPASS_PRCTL, SPEC_STORE_BYPASS_SECCOMP, }; /* AMD specific Speculative Store Bypass MSR data */ extern u64 x86_amd_ls_cfg_base; extern u64 x86_amd_ls_cfg_ssbd_mask; /* * On VMEXIT we must ensure that no RSB predictions learned in the guest * can be followed in the host, by overwriting the RSB completely. Both * retpoline and IBRS mitigations for Spectre v2 need this; only on future * CPUs with IBRS_ATT *might* it be avoided. */ static inline void fill_RSB(void) { unsigned long loops; register unsigned long sp asm(_ASM_STACK_POINTER); asm volatile (__stringify(__FILL_RETURN_BUFFER(%0, RSB_CLEAR_LOOPS, %1)) : "=r" (loops), "+r" (sp) : : "memory" ); } extern enum spectre_v2_mitigation spectre_v2_get_mitigation(void); extern void spectre_v2_set_mitigation(enum spectre_v2_mitigation mode); extern void spectre_v2_retpoline_reset(void); extern void __spectre_v2_select_mitigation(void); extern void spectre_v2_print_mitigation(void); extern bool spectre_v2_has_full_retpoline(void); extern bool mds_idle_clear; #include <asm/segment.h> /** * mds_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability * * This uses the otherwise unused and obsolete VERW instruction in * combination with microcode which triggers a CPU buffer flush when the * instruction is executed. */ static inline void mds_clear_cpu_buffers(void) { static const u16 ds = __KERNEL_DS; /* * Has to be the memory-operand variant because only that * guarantees the CPU buffer flush functionality according to * documentation. The register-operand variant does not. * Works with any segment selector, but a valid writable * data segment is the fastest variant. * * "cc" clobber is required because VERW modifies ZF. */ asm volatile("verw %[ds]" : : [ds] "m" (ds) : "cc"); } /** * mds_idle_clear_cpu_buffers - Mitigation for MDS vulnerability * * Clear CPU buffers if the corresponding static key is enabled */ static inline void mds_idle_clear_cpu_buffers(void) { if (unlikely(mds_idle_clear)) mds_clear_cpu_buffers(); } #endif /* __ASSEMBLY__ */ #endif /* __NOSPEC_BRANCH_H__ */